
Ebib Manual

Joost Kremers

July 13, 2009

Contents

1 Installation 2

2 Basic Usage 3
2.1 Getting Started . 3

2.1.1 Opening a .bib file . 3
2.1.2 Navigating a .bib file . 4
2.1.3 Starting a New .bib File 5

2.2 Editing the Database . 5
2.2.1 Adding and Deleting Entries 5
2.2.2 Editing Fields Values . 6
2.2.3 Editing Multiline Values 6
2.2.4 Copy, cut, paste (yank), and delete 7

2.3 Saving a Database . 7
2.4 Searching . 8
2.5 LaTeX Integration . 9

2.5.1 Consulting databases from within a LaTeX file 9
2.6 Cross-referencing . 10
2.7 Printing the Database . 11
2.8 Marking Entries . 12
2.9 Calling a Browser . 13
2.10 Viewing Files . 13

3 Advanced Features 14
3.1 Screen Layout . 14
3.2 Preloading .bib Files . 15
3.3 @Preamble Definition . 15
3.4 @String Definitions . 16
3.5 Sorting the .bib file . 17
3.6 Merging and Importing . 18
3.7 Exporting Entries . 18
3.8 Timestamps . 19
3.9 Multiple Identical Fields . 19

1

3.10 Virtual Databases . 20
3.10.1 Simple Selection . 21
3.10.2 Complex Filters . 21
3.10.3 Properties of Virtual Databases 22

3.11 The Multiline Edit Buffer . 23

4 The Ebib Buffers 23
4.1 The Index Buffer . 23
4.2 The Entry Buffer . 28
4.3 The Strings Buffer . 30

5 Customisation 32
5.1 The Customisation Buffer . 32

5.1.1 Default Type . 32
5.1.2 Preload Bib Files . 32
5.1.3 Additional Fields . 32
5.1.4 Layout . 32
5.1.5 Index Window Size . 32
5.1.6 Index Display Fields . 33
5.1.7 Insertion Commands . 33
5.1.8 Sort Order . 33
5.1.9 Save Xrefs First . 33
5.1.10 Crossref Face . 33
5.1.11 Marked Face . 34
5.1.12 Use Timestamp . 34
5.1.13 Timestamp Format . 34
5.1.14 Standard Url Field . 34
5.1.15 Url Regexp . 34
5.1.16 Browser Command . 34
5.1.17 Standard File Field . 35
5.1.18 File Associations . 35
5.1.19 File Regexp . 35
5.1.20 File Search Dirs . 35
5.1.21 Print Preamble . 35
5.1.22 Print Multiline . 36
5.1.23 Latex Preamble . 36
5.1.24 Print Tempfile . 36
5.1.25 Allow Identical Fields . 36
5.1.26 Entry Types . 36

5.2 Modifying Key Bindings . 36

2

Ebib is a program with which you can manage BibTeX database files without
having to edit the raw .bib files. It runs in GNU/Emacs, version 21.1 or higher
(lower versions are not supported) and XEmacs (at least from version 21.4;
lower version have not been tested, but may work.)

It should be noted that Ebib is not a minor or major mode for editing BibTeX
files. It is a program in itself, which just happens to make use of Emacs as a
working environment, in the same way that for example Gnus is.

The advantage of having a BibTeX database manager inside Emacs is that
X is no longer required, as Emacs can run on the console, and also that some
integration with Emacs’ TeX and LaTeX modes becomes possible. For example,
you can push a BibTeX key from Ebib to a LaTeX buffer, or, vice versa, when
you’re in a LaTeX buffer, you can consult your BibTeX database and insert a key
from it into the document. Another advantage of Ebib is that it is completely
controlled by key commands: no stressful mouse movements are required, as
with most other (usually X-based) BibTeX database managers.

1 Installation

To install Ebib, so that it will be loaded automatically when Emacs is started,
simply copy the file ebib.el to somewhere in your load path and add the fol-
lowing line to Emacs’ init file (˜/.emacs for GNU/Emacs, ˜/.xemacs/init.el
for XEmacs):

(autoload ’ebib "ebib" "Ebib, a BibTeX database manager." t)

Note: if you do not know what your load path is set to, go to the *scratch*
buffer, type load-path on an empty line, put the cursor right after it and type
C-j. The value of load-path will then appear in the buffer.

When Ebib is loaded, you can run it with M-x ebib. This command is also
used to return to Ebib when you have put the program in the background.
You can bind this command to a key sequence by putting something like the
following in Emacs’ init file:

(global-set-key "\C-ce" ’ebib)

You can of course choose any key combination you like. (In Emacs, key
combinations of C-c <letter> are reserved for the user, so that no package
may set them.)

It is recommended to byte-compile the source, Ebib runs quite a lot faster
when it is byte-compiled. You can do this either within Emacs with M-x byte-compile-file,
or from your shell by going into the directory where you put ebib.el and typ-
ing:

emacs -batch -f batch-byte-compile ebib.el

3

(Substitute emacs with xemacs if you use XEmacs.) This will create a file
ebib.elc, which Emacs will load instead of ebib.el. Byte-compiling Ebib may
produce a warning about functions that are “not known to be defined”. This can
be safely ignored. GNU Emacs and XEmacs have some small differences, and
the functions reported in this warning are those used by the other version. Ebib
makes sure that the correct functions are called.

2 Basic Usage

A BibTeX database is somewhat of a free-form database. A BibTeX entry consists
of a set of field-value pairs. Furthermore, each entry is known by a unique key.
The way that Ebib navigates this database is by having two windows, one that
contains a list of all the entry keys in the database, and one that contains the
fields and values of the currently highlighted entry.

When Ebib is started, the current windows in Emacs are hidden and the
Emacs frame is divided into two windows. The top one contains a buffer that is
called the index buffer, while the lower window contains the entry buffer. When
a database is loaded, the index buffer holds a list of all the keys in the database.
You can move through these keys with the cursor keys. In the entry buffer, the
fields of the currently highlighted entry are shown, with their values.

In this chapter, all basic functions of Ebib are described, so that you can get
startet with it. At times, reference will be made to later chapters, where more
specific functions are described.

2.1 Getting Started

Ebib is started with the command M-x ebib. Entering this command hides all
the windows in the current Emacs frame and replaces them with two windows:
the top one contains the index buffer, the bottom one, taking up the larger part
of the screen, contains the entry buffer. The index buffer is named none, to
indicate that no database has been loaded. If you open a database, or start a
new one, the index buffer will carry its name.

You can quit Ebib by typing q. You will be asked for confirmation, and
you will receive a warning if you happen to have an unsaved database. The
command z can also be used to leave Ebib. However, unlike q, which completely
quits Ebib, z only lowers it, so that it remains active in the background. The
.bib files that you have opened remain loaded, and you can return to them by
typing M-x ebib again.

2.1.1 Opening a .bib file

Loading a .bib file into Ebib is done with the command o. Ebib reads the file
that you specify, and reports how many entries it found, how many @string
definitions it found, and whether a @preamble was found. Note that when Ebib
reads a .bib file, it only reads entry types (e.g. book, article, phdthesis

4

etc.) that it knows about. Fields (e.g. author, title, year etc.) that Ebib
does not know about, are loaded (and saved) but not displayed, so they cannot
be edited. Therefore, you should make sure that all the entry types and fields
that your databases use are defined. A sensible set has been predefined, so
that anyone who’s using standard BibTeX entry types should have no problem
loading an existing .bib file into Ebib. If, however, you have custom entry types,
or custom fields in your .bib files, you should read the chapter on customising
Ebib to learn how to define them, so that Ebib knows about them. (See 5.1.26.)

Every time Ebib reads a .bib file, it produces a few log messages. These
are written into a special buffer *Ebib-log*. If Ebib encounters entry types in
the .bib file that it doesn’t know, it will log a warning. If Ebib finds something
that it believes to be incorrect, an error will be logged. If any warnings or errors
occur while loading the .bib file, Ebib tells you so after loading the file. To view
the log file, press l in the index buffer.

Note that even if it detects warnings or errors, Ebib will try to continue
parsing the rest of the .bib file. That means that normally, only the entry in
which an error occurs is not read. Entries occurring after the problematic one
are read.

2.1.2 Navigating a .bib file

Once you’ve opened a .bib file, the keys of all the entries in the file are shown
in alphabetical order in the index buffer in the top Ebib window. (In fact, it is
possible to show more than just the entry key in this buffer. See 5.1.6 on how to
accomplish this.) The first entry is highlighted, meaning it is the current entry.
The fields it holds and their values are shown in the entry buffer in the bottom
Ebib window. The first field is the type field, which tells you what kind of entry
you’re dealing with (i.e. book, article, etc.).

Below the type field, Ebib displays (up to) three sets of fields. The first set are
the so-called obligatory fields, the fields that BibTeX requires to be filled. The
second group are the optional fields, which do not have to be filled but which
BibTeX will normally add to the bibliography if they do have a value. The third
group are the so-called additional fields. These fields are usually ignored by
BibTeX (note that BibTeX normally ignores all fields it does not know), although
there are bibliography styles that treat some of these fields as optional rather
than as additional; (i.e., the harvard styles do typeset the url field, if present.)

The first two groups of fields are different for each entry type, while the
third group are common to all entry types. You can use the additional fields,
for example, to add personal comments to the works in your database. Ebib
by default defines the following additional fields: crossref, url, annote,
abstract, keywords, file and timestamp. If these are not sufficient for you,
you need to customise Ebib and add your own fields. (See 5.1.3, if you need to
find out how to do that.)

To move around in the index buffer, you can use the up and down cursor
keys, C-p and C-n, or for those more used to mutt’s key bindings, k and j.
Furthermore, Space and PgDn move a screenful of entries down, while b and

5

PgUp move in the other direction. Lastly, g and Home move to the first entry,
while G and End move to the last one.

Ebib is not restricted to opening just one .bib file at a time. You can open
more files by just typing o again and entering the filename. Ebib numbers the
databases: the number of each database is shown in the mode line of the in-
dex buffer, directly before the database name. The keys 1—9 provide a quick
way of jumping from one database to another. Note that the numbering is dy-
namic: if you have three databases opened and then close the second, database
3 becomes database 2.

With the left and right cursor keys, you can move to the previous or
next database. These keys wrap, so if you hit the left cursor key while the
first database is active, you move to the last database. If you are done with a
database and want to close it, type c. This closes the current database. It does
not leave Ebib, and all other databases you have open will remain so.

2.1.3 Starting a New .bib File

If you want to start a new .bib file from scratch, you cannot just go and enter
entries. You first have to give the database a name. So, to start a new database,
type o first, and give the new file a name. Once you have done this, you can
start adding entries to the database.

2.2 Editing the Database

Of course, being able to open and view .bib files is only half the fun. One needs
to be able to edit the files as well. Ebib’s essential editing facilities are discussed
here.

2.2.1 Adding and Deleting Entries

To add an entry to a database, you type a. When you do this, Ebib first asks you
for an entry key, as every entry must be identified by a unique key. Just type a
name for the new entry (say jones1998). Since the entry key must be unique,
Ebib will complain if you enter a key that already exists.

Note that if you should later decide that you want to change the key of an
entry, you can do so with the command E. So if you have an entry with the key
jones1998 and you want to add another entry by Jones from 1998, you can call
the new one jones1998b and rename the existing one to jones1998a.

Deleting an entry is done with d. Be careful with this: you will be asked
for confirmation, but once you’ve confirmed, the entry is gone, and it is not
possible to bring it back. There is no undo in Ebib. (If you haven’t saved the
database yet, it is still possible to retrieve the deleted entry from the .bib file,
and otherwise it may still be in the backup file that Ebib creates. See 2.3.)

6

2.2.2 Editing Fields Values

Editing the field values for an entry is done in the lower of the two Ebib buffers,
the so-called entry buffer. You can move focus to the entry buffer by typing the
command e in the index buffer.

You can move between fields with the same keys that you use to move be-
tween entries in the index buffer: the cursor keys up and down, C-p and C-n, or
j and k. Space and PgDn move to the next set of fields, while PgUp and b move
to the previous set of fields. g and G, and Home and End also work as expected.

Editing a field value can be done with e. For most fields, Ebib simply asks
you for a string value in the minibuffer. (Here, RET confirms the edit, while
C-g cancels it.) Although BibTeX requires that field values be surrounded by
braces {} (or double quotes “”, but Ebib does not use those, even though it can
of course handle them when they are used in an existing .bib file) you do not
need to type these. Ebib adds them when it saves the .bib file.

Some fields, however, are handled in a special way. The first of these is the
type field: if you edit this field, you must enter one of the predefined entry
types. Ebib won’t allow you to enter anything else. You can use tab-completion
in this case. Similarly, if you edit the crossref field, Ebib requires that you fill
in a key from the database. Here, too, you can use tab-completion.

Note that if you’re adding a new entry, Ebib automatically puts you in the
entry buffer after you’ve typed the entry key: you don’t have to type e to move
to the entry buffer. When creating a new entry, it is best to set the type field
first, because the type field determines which other fields are available for an
entry.

Note also that after editing a field, Ebib (usually) puts you on the next field.
This is convenient if you’re creating a new entry and need to fill out several
fields in a row.

If you’re done editing the fields of the entry, type q to move focus back to the
index buffer. (Note: keys may have different functions in the index buffer and
the entry buffer. q is a typical example: in the entry buffer, it quits editing the
entry and moves focus back to the index buffer. In the index buffer, however, q
quits Ebib.)

2.2.3 Editing Multiline Values

Apart from the type and crossref field, there is another field that Ebib handles
in a special way when you edit its value. This is the annote field. Most field
values normally consist of a single line of text. However, because the annote
field is meant for creating annotated bibliographies, it would not be very useful
if you could only write one line of text in this field. Therefore, when you edit
the annote field, Ebib puts you in the so-called multiline edit buffer. This is
essentially a text mode buffer that allows you to enter as much text as you like.
To store the text and leave the multiline edit buffer, type C-x b. (This is of
course the standard Emacs command to switch buffers. It is redefined in Ebib’s
multiline edit buffer.)

7

If you want to leave the multiline edit buffer without saving the text you
have just typed, you can use the command C-x k. This too is redefined in the
multiline edit buffer: it leaves the multiline edit buffer (and hides it), but it does
not actually kill the buffer.

Multiline values are not restricted to the annote field. Any field can in fact
hold a multiline value. (Except of course the type and crossref fields.) To
give a field a multiline value, use l instead of e. You will again be put in the
multiline edit buffer, where you can edit the value. Note that you can use l even
if a field already has a single line value. Ebib will just make that the first line in
the multiline edit buffer.

When a field has a multiline value, only the first line is shown in the entry
buffer, for space reasons. To indicate that the value is multiline, a plus sign + is
placed in front of the value.

By the way, the e key is smart about the way an entry must be edited. If
you press e on a field that already has a multiline value, regardless of the fact
whether it is the annote field or not, Ebib puts you in the multiline edit buffer.
Therefore, you need l only if you want to give a field a multiline value when it
doesn’t have one yet.

For more details on working with the multiline edit buffer, see 3.11.

2.2.4 Copy, cut, paste (yank), and delete

A few more commands are available when you’re in the entry buffer editing
field values. The commands c, x and y implement a copy and paste system: c
copies the contents of the current field to the kill ring, x kills the contents of the
current field to the kill ring, and y yanks (pastes) the most recently killed text in
the kill ring. You can type y repeatedly to get the same effect you get in Emacs
when you type M-y after an initial C-y: every additional use of y moves back in
the kill ring.

Lastly, there is the command d, which deletes the contents of the current
field, without asking questions and without storing the text in the kill ring.

Note that y only works when the current field does not have a value yet. This
is to prevent you from accidentally overwriting a field value. If you do want to
yank text into a field that already has a value, simply hit d first to delete the
text.

2.3 Saving a Database

When you have undertaken any kind of editing action on a database, it is
marked as modified, which is indicated in the mode line for the index buffer. A
modified database can be saved by typing s. This saves the database to the file
it was loaded from without asking for confirmation. (It is similar to C-x C-s in
Emacs.) If you’re saving a file for the first time after loading it, Ebib creates a
backup file under the same name appended with a tilde: <filename>.bib˜.

8

If you have multiple databases open, have made changes in more than one
of them, and want to save all of them without going through each yourself, you
can use S. (That’s a capital S.) This command saves all modified databases.

Another way to save a database is to use the command w. Use this if you
want to write the database to another file than the one it was loaded from.
Ebib will ask you for a filename to save to, and will of course warn you if that
file happens to exist already. Note that this command is similar to C-x C-w in
Emacs, so that after using it, the new .bib file becomes associated with the
database.

2.4 Searching

Ebib provides several search methods. First, if you are in the index buffer, the
normal Emacs incremental searches, C-s and C-r, function as expected. You
can use them to search entry keys. Note that once you’ve found the key you’re
searching, you must hit ENTER to make it active. Ebib does not update the entry
buffer during incremental search, as this would be rather pointless: you’re only
interested in the entry you’re searching for, not in the entries you pass along the
way.

Of course, it is also possible to search the database itself. If you type /,
Ebib asks you for a search term. This can be a regular expression, to allow
for flexibility in searching. After hitting ENTER, Ebib will start searching the
database (starting from the current entry, not from the first entry!) and will
display the entry with the first occurrence of the search string that it finds. All
the occurrences of the search string in that entry are highlighted.

Ebib searches all the fields of each entry. It is not possible with / to specify
the fields to search. Note that if the search term is found in a field with a
multiline value, Ebib will highlight the + sign that it displays in front of the
field value. Keep an eye out for this when doing a search, because Ebib only
shows the first line of multiline values, and if the search term appears in another
line, the highlighted + is the only indication that the search term was found.
(Well, that and the fact that Ebib does not say Search string not found, of
course. . .)

A search term may of course appear more than once in the database. To
search for the next occurrence, type n. This will continue searching for the
search string in the rest of the database. Again, the first entry found to contain
the search string is displayed. Note that n does not wrap: if the end of the
database is reached, Ebib stops searching. To continue searching from the top,
hit g and then n.

The functions described here form Ebib’s basic search functionality. Ebib also
has a much more powerful search mechanism in the form of virtual databases.
These are described later. (See 3.10.)

9

2.5 LaTeX Integration

Having a BibTeX database manager running inside Emacs has an additional
advantage: it makes it trivially easy to insert BibTeX keys in your LaTeX docu-
ments.

Ebib provides two functions for this. First, if you’re in a LaTeX buffer, you can
call the function ebib-insert-bibtex-key. When you invoke this command,
Emacs prompts you for a key from the database(s) associated with the current
buffer, a citation command (that has to be typed without the backslash) and any
optional argument(s) the command allows. You can type the key using TAB-
completion, and after hitting RET, Emacs puts a BibTeX citation at the cursor
position in the current buffer with the key you selected.

You can also do it the other way around: if you’re in the index buffer in Ebib,
you can push an entry to a LaTeX buffer. To do this, use the key p. Ebib will ask
you for a buffer to push the entry to, a citation command and also any optional
arguments, and then insert a citation at the current cursor position in the buffer
you’ve supplied.

For the citation command that ebib-insert-bibtex-key and the command
key p ask for can be any command that you need. But it is also possible to
predefine a list of citation commands which you can then enter at this prompt
using tab completion. For details on setting this up, see 5.1.7.

There is another function that is available outside Ebib: ebib-entry-summary.
This command reads the key under the cursor in the current buffer and displays
the field values associated with that key in a *Help* buffer. This allows you to
quickly check a reference in a text.

Probably the easiest way to use both ebib-insert-bibtex-key and ebib-entry-summary
is to bind them to a key sequence. For example, you could put the following in
your ˜/.emacs:

(add-hook ’LaTeX-mode-hook #’(lambda ()
(local-set-key "\C-cb" ’ebib-insert-bibtex-key)))

This binds C-c b to the command ebib-insert-bibtex-key in AUCTeX’s
LaTeX mode. (Note that commands of the form C-c <letter> are reserved for
the user, and should therefore not be set by any package. For this reasons, Ebib
does not set this command automatically.)

2.5.1 Consulting databases from within a LaTeX file

The commands ebib-insert-bibtex-key and ebib-entry-summary must con-
sult the database or databases loaded in Ebib, and Ebib tries to be smart about
which database(s) to consult. Usually, a LaTeX file has a \bibliography com-
mand somewhere toward the end, which names the .bib file or files that con-
tain the bibliography entries. If you consult a BibTeX database from within a
LaTeX file, Ebib first looks for a \bibliography command, reads the .bib files
from it, and then sees if those files happen to be open. If they are, Ebib uses

10

them to let you pick an entry key (in the case of ebib-insert-entry-key) or
to search for the entry (in the case of ebib-entry-summary).

Of course, it may be the case that the LaTeX file is actually part of a bigger
project, and that only the master file contains a \bibliography command. To
accommodate for this, Ebib checks whether the (buffer-local) variable TeX-master
is set to a filename. If it is, it reads that file and tries to find the \bibliography
command there. (Note: TeX-master is an AUCTeX variable, which is used to
keep track of multi-file projects. If you don’t use AUCTeX, this functionality
doesn’t work, and Ebib will only check the current file for a \bibliography
command.)

Note that if one of the .bib files in the \bibliography command isn’t
loaded, Ebib issues a warning message about this, and continues to check for
the next .bib file. These warning messages appear in the minibuffer, but are
probably directly overwritten again by further messages or prompts Ebib pro-
duces, so check the *Messages* buffer if Ebib doesn’t seem to be able to find an
entry that you’re sure is in one of your databases.

Another thing to keep in mind is that Ebib only looks for a \bibliography
command once: the first time either ebib-insert-bibtex-entry or ebib-entry-summary
is called. It stores the result of this search and uses it the next time either of
these commands is used. Therefore, if you make a change to the \bibliography
command, you must reload the file (use M-x revert-buffer) to make sure Ebib
rereads the \bibliography command.

If no \bibliography command is found at all, either in the LaTeX file itself,
or in the master file, Ebib simply consults the current database, i.e. the database
that was active when Ebib was lowered with z.

2.6 Cross-referencing

BibTeX has a cross-referencing facility. Suppose you have an entry jones1998,
which appeared in a book that is also in your database, say under miller1998.
You can tell BibTeX that jones1998 is contained in miller1998 by putting
miller1998 in the crossref field. When BibTeX finds such a cross-reference,
all the fields of jones1998 that don’t have a value inherit their values from
miller1998. At the very least, this saves you some typing, but more impor-
tantly, if two or more entries cross-reference the same entry, BibTeX automati-
cally includes the cross-referenced entry in the bibliography (and puts a reduced
reference in the cross-referencing entries).

When you fill in the crossref field in Ebib, Ebib displays the values of the
cross-referenced entry in the entry buffer. To indicate that they are just inherited
values, they are marked with ebib-crossref-face, which by default is red.
(You can customise it, of course. See the customisation option 5.1.10.) These
values are just displayed for convenience: otherwise, Ebib treats these fields as
if they are empty. That is, they cannot be edited (to edit them, you need to edit
the cross-referenced entry), and it’s not possible to copy these values to the kill
ring.

11

If you’re viewing an entry that has a cross-reference and you want to go to
the cross-referenced entry you can type F. This command reads the value of the
crossref field and then displays that entry. If you want to do the reverse, i.e.,
see if the current entry is cross-referenced by any other entries, you can use the
key N. What this command actually does is to make the key of the current entry
the current search string and to search for its first occurrence after the current
entry. Like the normal search command /, N does not wrap and only searches
forward. So if you want to search for the next cross-referencing entry you need
to press n (i.e., lowercase n), and to continue searching from the first entry,
press g followed by n.

Note that if you want to use BibTeX’s cross-referencing options, you need to
set the option 5.1.9. This tells Ebib to save all entries with a crossref field first
in the .bib file. Without this, BibTeX’s cross-referencing will not work reliably.

2.7 Printing the Database

Sometimes it may be useful to have a .pdf file or print-out of your database.
Although Ebib does not actually do the printing itself, it can create a LaTeX file
for you that you can compile and print. In fact, there are two ways of doing
this.

The first is the command L. This command creates a simple LaTeX document
that essentially contains a \nocite{*} command followed by a \bibliography
command referring to the .bib file belonging to the current database. You can
then run the usual sequence of LaTeX, BibTeX, LaTeX, LaTeX on this file, creating
a document containing a list of all the references in your database.

The second command for printing a database is P. This command also cre-
ates a LaTeX file. However, instead of simply providing a \nocite{*} command,
P creates a tabular environment for each entry in the database listing all the
fields of that entry and their values.

The difference between L and P should be obvious: with L, you get a list
of references created by BibTeX. This means that the references look the way
they will when actually used in a document, but it also means that the list only
contains the information that BibTeX deems relevant.

With P you get an overview of your database with all the field values of
each entry, including the ones that BibTeX does not use. The entries are not
formatted as literature references, but in a way similar to how they are shown
in Ebib.

By default, P only shows single-line field values. That is, multiline values are
normally excluded. If you want to include multiline values in the print-out, you
have to set the option Print Multiline in Ebib’s customisation buffer. (See
5.1.) With this option set, Ebib will include all multiline values in the LaTeX
file that P creates. Note however that Ebib does not change anything about the
formatting of the text in a multiline value. So if you plan to make (heavy) use
of this option, make sure that the way you type your text conforms to LaTeX’s
conventions (e.g. empty lines to mark paragraphs, etc.) and doesn’t contain

12

any characters such as & that are illegal in LaTeX. (Or, alternatively, use LaTeX
code in your multiline fields.)

As mentioned, when you use either L or P, Ebib creates a LaTeX file. More
precisely, it creates a temporary buffer and writes the LaTeX code into it, and
then saves the contents of that buffer to a file. After it has done that, Ebib lowers
itself and instruct Emacs to open the file in a buffer, which will then be properly
set up as a LaTeX buffer. From there you can run LaTeX and view the result.

Before doing all this, Ebib asks you which file to write to. Be careful with
this: since this is supposed to be a temporary file, Ebib simply assumes that
if you provide a filename of an existing file, it can overwrite that file without
warning!

A better way to tell Ebib which file to use is to set the option Print Tempfile
in Ebib’s customisation buffer to some temporary file. When this option is set,
Ebib will always use this file to write to, and will not ask you for a filename
anymore when you type L or P.

There are two more customisation options for printing the database. These
are Print Preamble and LaTeX Preamble. With these options, you can specify
what Ebib should put in the preamble of the LaTeX files it creates. Use this if you
want to use specific packages (e.g. \usepackage{a4} or \usepackage{times}).
This is especially useful for L, since by default, Ebib uses BibTeX’s standard
bibliography style. With the option LaTeX Preamble you can set your preferred
bibliography style. Details are discussed in the chapter on customisation, see
5.1.

2.8 Marking Entries

Commands in the index buffer generally operate on one single entry, or on all
entries. For some, however, it may sometimes be useful to perform them on
more than one entry, but not necessarily all of them. This can be achieved by
marking entries. You can mark the entries you want to perform a command
on with the key m. This marks (or unmarks) the current entry. Marked entries
are displayed in inverse video (in GNU Emacs) or white on red (in XEmacs;
note that the face properties of marked entries can be customised through the
customisation option 5.1.11.)

Of the commands discussed so far, four can be used on marked entries: d, p,
L and P. Note, however, that it is not enough to mark the entries you want and
then type any of these commands. If you do so, they will behave as if no entries
were marked. To get these commands to work on the marked entries, you have
to type a semicolon before them. That is, ; d deletes all marked entries, and ;
L and ; P create a LaTeX file of only the marked entries. The command m itself
can also be used with the ; prefix. If there are any marked entries, ; m unmarks
them all. Otherwise, ; m marks all entries.

; p pushes all marked entries to a LaTeX buffer. It does so by putting them
all in a single \cite command, separated by commas, not by putting them in
separate \cite commands.

13

2.9 Calling a Browser

With more and more scientific literature becoming available on-line, it becomes
common to store URLs in a BibTeX database. Sometimes you may want to load
such a URL in your browser. Ebib provides a convenient way for doing so.

If you type u in the index buffer, Ebib takes the first URL stored in the url
field of the current entry and passes it to your browser. Furthermore, in the
entry buffer, you can use u on any field. If you happen to have more than one
URL stored in the relevant field, and you want to pass the second (or third,
etc.) to the browser, you can use a prefix argument. So typing M-2 u sends the
second URL to your browser, M-3 u the third, and so on.

It is not even necessary that the relevant field contains only URLs. It may
contain other text mixed with the URLs: Ebib simply searches the URLs in the
field and ignores the rest of the text. Ebib considers every string of characters
that starts with http:// or https:// and that does not contain whitespace or
any of the characters " ’ < or > as a URL. Furthermore, Ebib regards everything
that is enclosed in a LaTeX \url{...} command as a URL. This behaviour is
controlled by a regular expression that can be customised. (See 5.1.15.)

There exists an Emacs function browse-url, which provides a nifty interface
to calling an external browser. In principle, Ebib uses this function. However, if
this function is not present on your installation, you can set the option 5.1.16
to call the browser.

As just explained, if you press u in the index buffer, Ebib searches the url
field of the current entry for URLs. If you have the habit of putting your URLs
in another field, however, you may change the customisation option 5.1.14 and
tell Ebib to use another field for searching the URLs. (Keep in mind, though,
that in the entry buffer, you can load a URL from any field.)

2.10 Viewing Files

If you have electronic versions of the papers in your database stored on your
computer, you can use Ebib to call external viewers for these files. The interface
for this is similar to that for calling a browser: if you press f in the index
buffer, Ebib searches the file field for a filename and when it finds one, calls
an appropriate viewer.

Just as with u, you can use f in the entry buffer as well, in which case it can
be used on any field, not just the file field. It is also possible to have more
than one filename in a field: you can select the one you want to view with the
prefix argument.

Just as in the case of URLs, you can customise several things about the file
view functionality. The option 5.1.17 allows you to customise the field that f
extracts filenames from when pressed in the index buffer. Extracting filenames
is done with a regular expression, which can be customised through the option
5.1.19.

The option 5.1.20 allows you to tell Ebib which directories it needs to search
for files. The default value is ˜, which means Ebib just looks in your home dir.

14

Since this is probably not where you keep your files, you may want to customise
this. Note that you can specify more than one directory.

Note that Ebib does not search directories recursively. It is possible, how-
ever, to put subdirectories in the filenames. That is, if you put something like
a/abney1987.pdf in the file field, Ebib searches for the relevant file in a subdi-
rectory a/ of the directories listed in the option File Search Dirs. (Note that
if you want to do this under Windows, you may want to remove the backslash
from the file regexp.)

Ebib can call different external programs depending on the file type of the
relevant file, but you have to specify which programs to call. The option 5.1.18
allows you to do this. By default, .pdf and .ps files are handled, by xpdf and
gv, respectively. You can specify further file types by their extensions (do not
include the dot). The program is searched for in PATH, but you can of course
specify the full path to the program.

3 Advanced Features

The features discussed in the previous chapter should be sufficient to get started
using Ebib. However, Ebib has several more advanced features, which are de-
scribed in this chapter.

3.1 Screen Layout

By default, Ebib takes over the entire Emacs frame it is started in. If you have
a wide enough screen, however, it may be more convenient to have Ebib take
up only part of the frame, so that you can have the LaTeX text you’re working
on and Ebib visible at the same time. The option 5.1.4 allows you to do this, by
giving you the ability to choose between a full-frame or a split-frame layout.

In the split-frame layout, the Ebib windows are displayed on the right of the
current frame, with the left part free for your document. In this layout, some
aspects of Ebib behave somewhat differently. Most importantly, the multiline
edit buffer is not displayed in the lower Ebib window, but in the non-Ebib win-
dow on the left. (Obviously, after leaving the multiline edit buffer, the original
buffer is restored to that window.)

Furthermore, pressing z in the index buffer leaves Ebib, but keeps the buffers
visible. You can get back to Ebib with the command M-x ebib (or any key bound
to it, of course), or simply by manually switching to the index buffer. If you want
to remove the Ebib buffers from the frame but keep Ebib in the background, you
can use Z (i.e. capital Z) in the index buffer. (Note that Z is also available in the
full-frame layout, but there it is identical to z.)

Lastly, the command ebib-entry-summary checks whether the Ebib buffers
are visible in the frame. If they are, it does not output the entry info in a *Help*
buffer, but rather displays the entry in Ebib itself.

15

3.2 Preloading .bib Files

Chances are that you will be doing most of your work with one or a few .bib
files, and you may find yourself opening the same file or files every time you
start Ebib. If so, you can tell Ebib to always load specific .bib files on startup.
To do this, specify the files in Ebib’s customisation buffer, under the option 5.1.2.

3.3 @Preamble Definition

Apart from database entries, BibTeX allows three more types of elements to
appear in a .bib file. These are @comment, @preamble and @string definitions.
Ebib provides facilities to handle the latter two. @comment definitions cannot
be added to a .bib file through Ebib, and if Ebib finds one in a .bib file, it is
simply ignored.

@preamble and @string definitions can be handled, however. Ebib allows
you to add one @preamble definition to the database. In principle, BibTeX allows
more than one such definition, but really one suffices, because you can use the
concatenation character # to include multiple TeX or LaTeX commands. So,
rather than having two @preamble definitions such as:

@preamble{ "\newcommand{\noopsort}[1]{} " }
@preamble{ "\newcommand{\singleletter}[1]{#1} " }

you can write this in your .bib file:

@preamble{ "\newcommand{\noopsort}[1]{} "
"\newcommand{\singleletter}[1]{#1} " }

Creating or editing a @preamble definition in Ebib is done by hitting r in
the index buffer. Ebib uses the multiline edit buffer for editing the text of the
@preamble definition, which means that as discussed above, C-x b stores the
@preamble text and returns focus to the index buffer, while C-x k returns focus
to the index buffer while abandoning any changes you may have made. (For
details on using the multiline edit buffer, see 3.11.)

In order to create a @preamble as shown above in Ebib, you only have to
type the text between the braces. Ebib takes care of including the braces of the
@preamble command, but otherwise it saves the text exactly as you enter it. So
in order to get the preamble above, you’d have to type the following in Ebib:

"\newcommand{\noopsort}[1]{} "
"\newcommand{\singleletter}[1]{#1} "

Note that when Ebib loads a .bib file that contains more than one @preamble
definition, it concatenates all the strings in them in the manner just described
and saves them in one @preamble definition.

16

3.4 @String Definitions

If you press t in the index buffer, Ebib hides the entry buffer in the lower win-
dow and replaces it with the strings buffer. In this buffer, you can add, delete
and edit @string definitions.

Adding a @string definition is done with the command a. This will first
ask you for an abbreviation and then for the value to be associated with that
abbreviation. Once you’ve entered these, Ebib will sort the new abbreviation
into the buffer.

Moving between the @string definitions can be done in the usual way: the
cursor keys up and down, C-p and C-n and k and j move up and down. Space
and PgDn move ten strings down, while b and PgUp move in the other direction.
The keys g, G, Home and End also function as expected.

To delete a @string definition, use d. To edit the value of a definition, use
e. There is also a command c, which copies the value of the current @string
definition to the kill ring. Unlike in the entry buffer, there are no corresponing
commands y and x. (In fact, x does exist, but has another function.) Yanking
from the kill ring can be done with C-y/M-y in the minibuffer when you edit
a @string’s value. Cutting a @string’s value is pointless, because a @string
definition must have a value.

Having defined @string definitions, there must of course be a way to use
them. Just giving a field a string abbreviation as value will not do, because
Ebib puts braces around the value that you enter when it writes the .bib file, so
that BibTeX will not recognise the abbreviation, and will not expand it. BibTeX
will only recognise an abbreviation if it appears in the .bib file outside of any
braces.

To accomplish this, you must mark a field’s value as raw. A raw field is a
field whose value is not surrounded by braces when the database is saved, so
that BibTeX recognises it as an abbreviation. To mark a field raw, press r. An
asterisk will appear before the field, indicating that it is raw. Pressing r again
will change the field back to normal. If you press r on a field that does not have
a value yet, Ebib will ask you for one.

Note that this also makes it possible to enter field values that are composed
of concatenations of strings and abbreviations. The BibTeX documentation for
example explains that if you have defined:

@string{WGA = "World Gnus Almanac"}

you can create a BibTeX field like this:

title = 1966 # WGA

which will produce “1966 World Gnus Almanac”. Or you can do:

month = "1~" # jan

which will produce someting like “1 January”, assuming your bibliography
style has defined the abbreviation jan. All this is possible with Ebib, simply

17

by entering the exact text including quotes or braces around the strings, and
marking the relevant field as raw.

An easy way to enter a @string abbreviation as a field value is to use the
key s instead of e. If you type s, Ebib asks you for a @string abbreviation to
put in the current field, and automatically marks the field as raw. With this
command, Ebib only accepts @string definitions that are in the database, so
that by using s you can make sure you don’t make any typos. Note that you can
use tab completion to complete a partial string.

3.5 Sorting the .bib file

By default, the entries in the database are saved to the .bib file in alphabetical
order according to entry key. If you only deal with the .bib file through Ebib,
you may not care in which order the entries are saved. However, it may some-
times be desirable to be able to specify the sort order of entries in more detail.
(Apparently, this can be useful with ConTeXt, for example.)

You can specify a sort order in Ebib’s customisation buffer. To sort the entries,
you must set at least one sort level (that is, a field to sort the entries on). You
can also specify more than one sort level: if two entries have identical values for
the first sort level, they will be sorted on the second sort level. E.g., if the first
sort level is author and the second is year, then the entries are sorted by author,
and those entries that have identical values for the author field are sorted by
year.

A sort level is not restricted to a single field. You can specify more fields for
a single sort level. Within a single sort level, a second sort field is used if the
first sort field does not have a value. For example, books that have an editor
instead of an author will have an empty author field. If you sort the database
on the author field, such entries will all appear at the beginning of the .bib
file, which is most likely not what you want.

To remedy this, you can specify both the author and the editor fields for
the first sort level. Ebib will then sort an entry on its author field if it has a
value, and will otherwise use the value of the editor field.

The difference between two sort fields within one sort level and two sort
levels is that a second sort field is an alternative for the first field when it has no
value, while a second sort level is an additional sort criterion when two or more
entries cannot be sorted on the first level, because they have identical values.

By default, the option Sort Order has no value, which means that the en-
tries in the .bib file are sorted according to entry key. Those that wish to
customise the sort order will usually want to set the first sort level to author
editor, and the second to year. In that way, the entries in the .bib file are
sorted according to author/editor, and entries with the same author/editor are
sorted by year.

Entries that cannot be sorted on some sort level, because the sort fields are
empty, are sorted on entry key. (Keep in mind that if the first sort level yields
no value for a specific entry, Ebib does not use the second sort level to sort that

18

entry. It uses the entry key. The second sort level is only used if the first yields
identical values for two or more entries.)

Note that if you have set the option Save Xrefs First (see 2.6), it is point-
less to set a sort order. Saving cross-referencing entries first messes up any sort
order, so Ebib simply ignores the sort order if Save Xrefs First is set.

3.6 Merging and Importing

As described in the previous chapter, adding entries to a database can be done
manually with the key a. There are other ways of adding entries to a database,
however.

With the command M you can merge a second .bib file into your current
database. When you hit M, you are asked for a filename. Ebib then reads the
entries in this file and adds them to the database. Duplicate entries (that is,
entries with an entry key that already exists in the database) will not be loaded.
Ebib logs a warning about each duplicate entry to its log buffer, and displays a
warning after loading the .bib file when this happens.

Another way to add entries to a database is to import them from an Emacs
buffer. If, for example, you find ready-formatted BibTeX entries in a text file
or e.g. on the internet, you can copy & paste them to any Emacs buffer (e.g.
the *scratch* buffer), and then execute the command M-x ebib-import. Ebib
then goes through the buffer and loads all BibTeX entries it finds into the current
database (i.e. the database that was active when you lowered Ebib). If you call
ebib-import while the region is active, Ebib only reads the BibTeX entries in
the region.

3.7 Exporting Entries

Sometimes it can be useful to copy entries from one database to another, or to
create a new .bib file with several entries from an existing database. For this
purpose, Ebib provides exporting facilities. To export an entry to a .bib file, use
the command x. Ebib will ask you for a filename to export the entry to. (If you
have already exported an entry before, Ebib will present the filename you used
as default, but you can of course change it.)

For obvious reasons, Ebib appends the entry to the file that you enter if it
already exists, it does not overwrite the file. If this is not what you want, delete
the file first, as Ebib provides no way to do this.

If you have more than one database open in Ebib, it is also possible to copy
entries from one database to another. To do this, use the x command with a
numeric prefix argument. E.g., if the database you want to export an entry to is
the second database, type M-2 x to export the current entry to it. The number
of the database is given in the modeline of the index buffer.

If the database you’re copying an entry to already contains an entry with the
same entry key, Ebib won’t copy the entry, and issues an appropriate warning
message.

19

Note that the command x can operate on marked entries. So to export
several entries in one go mark them and type ; x. You can use a prefix argument
in the normal way: M-2 ; x exports the marked entries to database 2.

Apart from entries, it is also possible to export the @preamble and @string
definitions. The @preamble definition is exported with the command X in the
index buffer. @string definitions can be exported in the strings buffer: x in
this buffer exports the current string, while X exports all @string definitions in
one go. All these commands function in the same way: when used without a
prefix argument, they ask for a filename, and then append the relevent data to
that file. With a numeric prefix argument, they copy the relevant data to the
corresponding open database.

3.8 Timestamps

Ebib provides the possibility to add a timestamp to every new entry, recording
the time it was added to the database. The timestamp is recorded in the (addi-
tional) field timestamp. (By default, this field is not shown, but you can make
it visible by pressing H in the index buffer.)

You can tell Ebib to create timestamps by setting the option Use Timestamp
in Ebib’s customisation buffer. With this option set, a timestamp is included in
entries added to the database with a. Ebib will also add a timestamp to entries
imported from a buffer or merged from a file, and to entries exported to another
database or to a file. When importing or exporting entries, existing timestamps
will be overwritten. The logic behind this is that the timestamp records the
date and time when the entry was added to the database, not when it was first
created.

Note that if this option is unset, the timestamp of an entry is retained when
it’s imported or exported. Therefore, if you record timestamps and want to
im-/export entries without changing their timestamps, temporarily unset this
option.

Ebib uses the function format-time-string to create the timestamp. The
format string that Ebib uses can be customised in Ebib’s customisation buffer.
The default string is "%a %b %e %T %Y", which produces a timestamp of the
form "Mon Mar 12 01:03:26 2007". Obviously, this string is not suited for
sorting, so if you want to be able to sort on timestamps, you’ll need to cus-
tomise the format string. See the documentation for format-time-string on
the options that are available.

3.9 Multiple Identical Fields

Under normal circumstances, a BibTeX entry only contains one occurrence of
each field. If BibTeX notices that an entry contains more than one occurrence
of an obligatory or optional field, it issues a warning. Ebib is somewhat less
gracious, it simply takes the value of the last occurrence without giving any
warning. (Note, by the way, that BibTeX will use the value of the first occur-
rence, not the last.) When additional fields appear more than once in an entry,

20

BibTeX does not warn you, since it ignores those fields anyway. Here, too, Ebib’s
standard behaviour is to ignore all but the last value.

However, some online reference management services “use” this feature of
BibTeX in that they put multiple keywords fields in the BibTeX entries that they
produce. If you were to import such an entry into Ebib, you would lose all your
keywords except the last one. To remedy this, you can tell Ebib that it should
allow multiple occurrences of a single field in a BibTeX entry. You can do this by
setting the customisation option 5.1.25.

With this option set, Ebib collapses the multiple occurrences into a single
occurrence. All the values of the different occurrences are collected and stored
in the single occurrence, separated by semicolons. That is, Ebib does not retain
the multiple occurrences, but it does retain the values. So suppose you have an
entry that contains the following keywords fields:

@book{jones1998,
author = {Jones, Joan},
year = {1998},
...
keywords = {sleep},
keywords = {winter},
keywords = {hybernation}

}

If you load this entry into Ebib with the option Allow Identical Fields
set, you will get the following:

@book{jones1998,
author = {Jones, Joan},
year = {1998},
...
keywords = {sleep; winter; hybernation}

}

3.10 Virtual Databases

In the previous chapter, Ebib’s basic search functionality was discussed. (See
2.4.) Ebib also provides a much more sophisticated search and filtering mecha-
nism in the form of virtual databases.

A virtual database is a database that is not associated with any .bib file.
Rather, it is created from another database by selecting entries from it based on
a specific search pattern, called a filter. This allows you, for example, to select
all entries from a database that contain the string “Jones” in their author field.
A filter can be as complex as you want: you can select all entries that do not
contain “Jones” in the author field, or all entries that contain “Jones” in either
the author or the editor field, or all entries that contain “Jones” in the author
field, and “symbiotic hybernation” in the keyword field, etc. Basically, the filter

21

can consist of an arbitray number of search criteria combined with the logical
operators and, or and not.

3.10.1 Simple Selection

Creating a virtual database is simple: press &, and Ebib will ask you for a field
to select on, and for a regular expression to select with. So if you want to select
all entries that contain “Jones” in the author field, you press & and type author
as the field and Jones as the regexp to filter on.

Ebib will then create a virtual database containing the entries matching your
selection criterion. A virtual database has the same name as the database it is
based on, prepended with V:. It also has a number like any other database,
and you can move back and forth to other databases with the number or cursor
keys.

If you don’t want to filter on one specific field but rather want to select all
entries that match a certain regexp in any field, you can type any as the field
to filter on. So specifying any as the field and Jones as the regexp, the virtual
database will select all entries that have a field that contains “Jones” in them.

3.10.2 Complex Filters

Once you have a virtual database, it remains associated with the database it
was created from. This means that you can refine or extend the selection (i.e.
the filter) that the virtual database is based on. If, in the current example, you
want to include all the entries that have “Jones” in the editor field, you have
to perform a logical or operation: you want to select an entry if it contains
“Jones” in the author field (which you already did) or if it contains “Jones” in
the editor field.

A short sidenote: the first impulse in a case like this might be to use and
instead of or: after all, you want to select all entries that contain “Jones” in the
author field and all entries that contain “Jones” in the editor field. However,
the filter that you build up is used to test each entry individually whether it
meets the selection criterion. An entry meets the criterion if it contains “Jones”
in the author field or if it contains “Jones” in the editor field. Therefore, or
is the required operator in this case. If you would use and, you would only get
those entries that contain “Jones” in both the author and editor fields.

To perform a logical or operation, press the key |. As before, you will be
asked which field you want to filter on, and which regexp you want to filter
with. Ebib will then update the virtual database with all entries in the original
database that match the additional criterion.

It is also possible to perform a logical and on the virtual database. Use this
if you want to select those entries that contain “Jones” in the author field and
e.g. “symbiotic hybernation” in the keyword field. A logical and operation is
done with the key &. (Note: this is the same key that is used to create a virtual
database. In fact, you can also create a virtual database with |: when used in

22

a normal database, & and | are equivalent. They are only different in virtual
databases.)

Both the & and | commands can be used with the negative prefix argument
M– (or C-u -, which is identical). In this case, the search criterion is negated.
That is, the negative prefix argument performs a logical not operation on the
search criterion.

That is, if you want to select all entries from a database that do not contain
“Jones” in the author field, you can do this by typing M– & and then filling out
the relevant field and regexp. This prefix argument is available both in real and
in virtual databases.

There is another way of performing a logical not operation, which is only
available in virtual databases: by pressing the key ˜, you invert the current filter.
That is, if you have a virtual database with all the entries containing “Jones” in
the author or in the editor field, and you press ˜, the selection is inverted, and
now contains all entries that do not have “Jones” in the author or editor field.

Although ˜ and the negative prefix argument to & or | both perform logical
not operations, they are not equivalent: ˜ negates the entire filter built up so far,
while the negative prefix argument only negates the single selection criterion
you enter with it.

If you want to know what the filter for the current virtual database is exactly,
you can type V. This command displays the current filter in the minibuffer. The
filter is specified as a Lisp expression, meaning that the operators appear before
their operands, not in between them. That is, x and y is written as (and x y).

With a prefix argument (any prefix argument will do), the command V not
only displays the current filter, but also reapplies it. This can be useful when
you’ve made changes to the source database: Ebib does not automatically up-
date a virtual database when its source database is modified.

3.10.3 Properties of Virtual Databases

Virtual databases differ from normal databases in several ways. First, they can-
not be modified: you cannot add or delete entries, and you cannot modify the
contents of fields. It is also not possible to import entries to them or merge
another file with them. Furthermore, it is not possible to export entries to them
or from them.

A virtual database cannot be saved in the normal way with s, and the com-
mand S to save all databases ignores virtual databases. If you want to save a
virtual database, you can use the command w. This command not only saves
the virtual database, it also changes it into a normal database, and detaches it
from its original source database, so that you can modify it without affecting
the source database.

The command L also doesn’t work with virtual databases. The reason for
this is that the virtual database is not associated with an actual .bib file, so
there is no file to create a list of references from. However, it is possible to use
the command P with a virtual database to create a list of entries. See 2.7, for
details on these two commands.

23

3.11 The Multiline Edit Buffer

As mentioned several times before, Ebib has a special multiline edit buffer,
which is used to edit field values that contain newlines (so-called multiline
fields), and also to edit the contents of the @preamble command. This section
discusses the details of this buffer.

Ebib enters multiline edit mode in one of three cases: when you press P in
the index buffer, to edit the @preamble definition, when you hit l in the entry
buffer to edit the current field as multiline, or when you hit e on the annote
field, or on a field whose value already is multiline.

The multiline edit buffer uses a special major mode, ebib-multiline-edit-mode,
which is derived from text-mode. The changes with respect to text-mode are
minor (see below), which means that any customisations you may have made
to text-mode will be available in the multiline edit buffer.

The settings that are specific for ebib-multiline-edit-mode are the func-
tions assigned to the key sequences C-x b, C-x k and C-x C-s. These key
sequences do not have their usual functions, but rather are redefined to fit Ebib.
Both C-x b and C-x k can be used to leave the multiline edit buffer. C-x b
will store the text as it is to the database, while C-x k leaves the multiline edit
buffer without storing the text, i.e., the original value of the field or preamble
that you were editing is retained. If the text in the buffer was modified, C-x k
asks you if you really want to abandon your changes.

If you leave the multitiline edit buffer with C-x b when the buffer is empty
(i.e., you deleted all the text, including the final newline), and you were editing
a field value or the @preamble definition, the field value or preambleis deleted.
(This is in fact the only way to delete the @preamble definition. Field values on
the other hand can also be deleted by hitting x or d on them in the entry buffer.)

The third command that is redefined in the multiline edit buffer is C-x C-s.
This command can be used to save the database. Because Ebib does not do an
autosave of the current database, it is advisable to save the database manually
every now and then to prevent data loss in case of crashes. It would be annoying
to have to leave the multiline edit buffer every time you want to do this, so C-x
C-s has been redefined to allow you to do this from within the buffer.

4 The Ebib Buffers

This chapter lists all the key commands that exist in Ebib, with a short descrip-
tion and the actual command that they call. The latter information is needed if
you want to customise Ebib’s key bindings. (See 5.2.)

4.1 The Index Buffer

Up

go to previous entry. (ebib-prev-entry)

24

Down

go to next entry. (ebib-next-entry)

Right

move to the next database. (ebib-next-database)

Left

move to the previous database. (ebib-prev-database)

PgUp

scroll the index buffer down. (ebib-index-scroll-down)

PgDn

scroll the index buffer up. (ebib-index-scroll-up)

Home

go to first entry. (ebib-goto-first-entry)

End

go to last entry. (ebib-goto-last-entry)

Return

make the entry under the cursor current. Use after e.g. C-s. (ebib-select-entry)

Space

equivalent to PgDn.

1-9

jump to the corresponding database.

/

search the database. (ebib-search)

&

Create a virtual database, or perform a logical and on the current virtual
database. With negative prefix argument: apply a logical not to the selec-
tional criterion. (ebib-virtual-db-and)

|

Create a virtual database, or perform a logical or on the current virtual
database. With negative prefix argument: apply a logical not to the selec-
tional criterion. (ebib-virtual-db-or)

˜

Perform a logical not on the current virtual database. (ebib-virtual-db-not)

25

a

add an entry. (ebib-add-entry)

b

equivalent to Pgup.

c

close the database. (ebib-close-database)

C

customise Ebib. (ebib-customize)

d

delete the current entry. (ebib-delete-entry)

; d

delete all marked entries.

e

edit the current entry. (ebib-edit-entry)

E

edit the key of the current entry. (ebib-edit-keyname)

f

extract a filename from the file field and send it to an appropriate viewer.
With numeric prefix argument, extract the n-th filename.

F

follow crossref field. (ebib-follow-crossref)

g

equivalent to Home.

G

equivalent to End.

H

show/hide hidden fields. (ebib-toggle-hidden)

j

equivalent to Down.

J

jump to another database. This accepts a numeric prefix argument, but
will ask you for a database number if there is none. (ebib-switch-to-database)

26

k

equivalent to Up.

l

show the log buffer. (ebib-show-log)

L

create a LaTeX file from the current database that produces a list of refer-
ences formatted by BibTeX. (ebib-latex-database)

; L

create a LaTeX file with the marked entries only.

m

mark (or unmark) the current entry. (ebib-mark-entry)

; m

unmark all marked entries.

M

merge a .bib file. (ebib-merge-bibtex-file)

n

find next occurrence of the search string. (ebib-search-next)

N

search for entries cross-referencing the current one. (ebib-search-crossref)

C-n

equivalent to Down.

M-n

equivalent to PgDn.

o

open a .bib file. (ebib-load-bibtex-file)

p

push an entry to a LaTeX buffer (ebib-push-bibtex-key)

; p

push the marked entries to a LaTeX buffer.

C-p

equivalent to Up.

27

M-p

equivalent to PgUp.

P

create a LaTeX file for printing the database, listing the entire contents of
each entry. (ebib-print-database)

; P

create a LaTeX file with the marked entries.

r

show and edit the @preamble definition in the database. (ebib-edit-preamble)

q

quit Ebib. This sets all variables to nil, unloads the database(s) and quits
Ebib. (ebib-quit)

s

save the database. (ebib-save-current-database)

S

save all modified databases. (ebib-save-all-databases)

t

show and edit the @string definitions in the database. (ebib-edit-strings)

u

extract a URL from the url field and send it to a browser. With numeric
prefix argument, extract the n-th url.

V

Display the filter of the current virtual database in the minibuffer. With
prefix argument: reapply the filter. (ebib-print-filter)

w

write the database to a different file. (ebib-write-database)

x

export the current entry to a file, or, when used with numeric prefix argu-
ment, to another database. (ebib-export-entry)

; x

export the marked entries to a file, or, when used with a numeric prefix
argument, to another database.

28

C-x b

equivalent to z.

C-x k

equivalent to q.

X

export the @preamble definition to a file or, when used with a numeric
prefix argument, to another database. (ebib-export-preamble)

z

move focus away from the Ebib windows. (ebib-leave-ebib-windows)

Z

put Ebib in the background. (ebib-lower)

One function is not bound to any key: ebib-print-filename.

4.2 The Entry Buffer

Up

go to the previous field. (ebib-prev-field)

Down

go to the next field. (ebib-next-field)

PgUp

go to the previous set of fields. (ebib-goto-prev-set)

PgDn

go to the next set of fields. (ebib-goto-next-set)

Home

go to the first field. (ebib-goto-first-field)

End

go to the last field. (ebib-goto-last-field)

Space

equivalent to PgDn.

b

equivalent to PgUp.

c

copy the contents of the current field to the kill ring. (ebib-copy-field-contents)

29

d

delete the value of the current field. The deleted contents will not be put in
the kill ring, and is therefore irretrievably lost. (ebib-delete-field-contents)

e

edit the current field. (ebib-edit-fields)

f

extract a filename from the current field and send it to an appropriate
viewer. With numeric prefix argument, extract the n-th filename.

g

equivalent to Home.

G

equivalent to End.

j

go to the next field. (ebib-next-field)

k

go to the previous field. (ebib-prev-field)

l

edit the current field as multiline. (ebib-edit-multiline-field)

C-n

equivalent to Down.

M-n

equivalent to PgDn.

C-p

equivalent to Up.

M-p

equivalent to PgUp.

q

quit editing the current entry and return focus to the index buffer. (ebib-quit-entry-buffer)

r

toggle a field’s “raw” status. (ebib-toggle-raw)

s

insert an abbreviation from the @string definitions in the database. (ebib-insert-abbreviation)

30

u

extract a URL from the current field and send it to a browser. With numeric
prefix argument, extract the n-th url.

x

cut the contents of the current field. Like c, x puts the contents of the
current field in the kill ring. (ebib-cut-field-contents)

y

yank the last element in the kill ring to the current field. Repeated use
of y functions like C-y/M-y. Note that no text will be yanked if the field
already has a value. (ebib-yank-field-contents)

4.3 The Strings Buffer

Up

go to the previous string. (ebib-prev-string)

Down

go to the next string. (ebib-next-string)

PgUp

go ten strings up. (ebib-strings-page-up)

PgDn

go ten strings down. (ebib-strings-page-down)

Home

go to the first string. (ebib-goto-first-string)

End

go to the last string. (ebib-goto-last-string)

Space

equivalent to PgDn.

a

add a new @string definition. (ebib-add-string)

b

equivalent to PgUp.

c

copy the text of the current string to the kill ring. (ebib-copy-string-contents)

31

d

delete the current @string definition from the database. You will be asked
for confirmation. (ebib-delete-string)

e

edit the value of the current string. (ebib-edit-string)

g

equivalent to Home.

G

equivalent to End.

j

equivalent to Down.

k

equivalent to Up.

l

edit the value of the current string as multiline. (ebib-edit-multiline-string)

C-n

equivalent to Down.

M-n

equivalent to PgDn.

C-p

equivalent to Up.

M-p

equivalent to PgUp.

q

quit the strings buffer and return focus to the index buffer. (ebib-quit-strings-buffer)

x

export the current @string definition to a file or, when used with a prefix
argument, to another database. (ebib-export-string)

X

export all the @string definitions to a file or, when used with a prefix
argument, to another database. (ebib-export-all-strings)

32

5 Customisation

Ebib can be customised through Emacs’ standard customisation interface. The
only thing that cannot be customised in this way are the key bindings. If you
wish to customise those, you have to use the file ˜/.ebibrc.

5.1 The Customisation Buffer

Ebib’s customisation group is a subgroup of the Tex group. It can be invoked
by typing M-x customize-group RET ebib RET, or by pressing C in the index
buffer. This chapter gives a short description of all the options available in the
customisation buffer.

5.1.1 Default Type

The default type is the default entry type given to a new entry. Every entry in
the Ebib database must have a type, because the type defines which fields are
available. When a new entry is created, Ebib gives it a default type, which can
be customised through this option. The standard value is article.

5.1.2 Preload Bib Files

This option allows you to specify which file(s) Ebib is to load when it starts
up. Specify one file per line, press the INS button to add more files. You can
complete a partial filename with M-TAB.

5.1.3 Additional Fields

The additional fields are those fields that are available for all entry types, and
which BibTeX generally ignores. This option allows you to specify which addi-
tional fields you wish to use in your database. Specify one field per line, press
the INS button to add more fields.

By default, the following additional fields are defined: crossref, url,
annote, abstract, keywords, file and timestamp.

5.1.4 Layout

The default value of this option is full, which means that Ebib takes over the
entire frame when it runs. Alternatively, you can select to specify a width (in
characters) yourself, in which case Ebib takes up the right part of the frame,
leaving the left part free. See 3.1 for details.

5.1.5 Index Window Size

This option lets you specify the size of the index window at the top of the Ebib
screen. The default value is 10.

33

5.1.6 Index Display Fields

This option allows you to specify fields that should be displayed next to the
entry key in the index buffer. By default, the index buffer only shows the key of
each entry, but if this is too little information, you can use this option to display
e.g. the title of each entry as well.

5.1.7 Insertion Commands

With the command ebib-insert-bibtex-key or with the command key p in
the index buffer, you can insert a BibTeX key into a LaTeX buffer. This option
allows you to define the commands that are available through tab completion
when these functions ask for a citation command.

The citation commands must be given without the leading backslash, as Ebib
adds one. Furthermore, you need to specify how many optional arguments each
command can have. When Ebib prompts you for a citation key, it will ask for as
many optional arguments as you specify here. (If you don’t want to be asked
for those optional arguments, just fill in 0.)

When Ebib prompts you for a citation command, the commands specified in
this option can be obtained through tab completion. However, it is not necessary
to fill in a command from this list here. You can also enter another command (in
which case Ebib asks for exactly one optional argument) or even no command
at all. In the latter case, Ebib does not ask for any optional arguments and
simply puts the key in the buffer without adding a backslash or curly braces.

5.1.8 Sort Order

The use of this option is explained above, see 3.5. To create a sort order, click
the INS button to create a sort level, and then click the INS button under that
sort level to enter a sort field. If you want to add more than one sort field to the
sort level, simply hit INS again.

5.1.9 Save Xrefs First

For cross-referencing to work, the cross-referencing entries must appear in the
.bib file before the cross-referenced entries. In order to tell Ebib to save all
entries with a crossref field first, you must set the option Save Xrefs First
in Ebib’s customisation buffer. With this option set, BibTeX’s crossreferencing
options work as intended.

By default, this option is unset, because it (marginally) slows down saving
the .bib file somewhat.

5.1.10 Crossref Face

Field values inherited from a cross-referenced entry are marked with this face.
By default, the face has red as foreground colour.

34

5.1.11 Marked Face

When entries are marked (with m), they are highlighted in this face. By default,
GNU Emacs uses the text property highlight. XEmacs only allows this on
terminals, therefore it displays marked entries with a red background and a
white foreground colour. This option allows you to change these defaults.

5.1.12 Use Timestamp

If this option is set, Ebib will add a timestamp field to every new entry, recording
the date and time it was added to the database. See 3.8.

5.1.13 Timestamp Format

This option specifies the format string that is used to create the timestamp. The
format string is used by format-time-string to create a time representation.
The default value is "%a %b %e %T %Y", which produces a timestamp of the
form "Mon Mar 12 01:03:26 2007". See the documentation for format-time-string
for the forms that the format string can take.

5.1.14 Standard Url Field

This is the field that Ebib searches for URLs if you press u in the index buffer. Its
default value is url.

5.1.15 Url Regexp

This is the regular expression that Ebib uses to search for URLs in a field. The
default value is:

\\url{\(.*\)}\|https?://[^ ’<>\"\n\t\f]+

With this regular expression, Ebib considers everything that is in a LaTeX
\url{...} command as a URL, and furthermore every string of text that starts
with http:// or https:// and does not contain whitespace or one of the char-
acters ’ " < or >.

5.1.16 Browser Command

If this option is unset (which is the default), Ebib uses the Emacs function
browse-url to start a browser. If this function does not exist, you can set this
option. For example, if you use the Firefox browser, set this option to firefox.

For this to work, the browser that you use must be able to handle a URL on
the command line.

35

5.1.17 Standard File Field

This is the field that Ebib searches for filenames if you press f in the index buffer.
Its default value is file.

5.1.18 File Associations

The programs used to view files. By default, programs for .pdf and .ps files
are specified, which should be available on most linux systems. If you prefer
other programs or are running on Windows, you’ll can specify them here. Note
that Ebib searches the PATH for the programs, but you can also specify full path
names. Of course, it is also possible to add new associations.

Note that GNU/Emacs 23 (as yet unreleased) comes with doc-view-mode,
which provides a way to view .pdf and .ps files inside Emacs. (The files are
converted to .png format first.) If you prefer to use this mode, simply leave the
program field blank for the relevant file type.

5.1.19 File Regexp

In order to find files in a field, Ebib uses a regular expression. The default value
is:

[^?|\:*<>\" \n\t\f]+

This essentially means that every string of characters not containing any of
the characters

? | \ : * < > "

or space, newline, tab of formfeed. URLs can easily by recognised by the
prefix http:, but recognising files is not so straightforward. It is therefore not
advisable to put anything but filenames in the file field.

5.1.20 File Search Dirs

This is the list of directories that Ebib searches for files. Note that searching is
not recursive: only the files listed here are searched, not their subdirectories.

5.1.21 Print Preamble

This option specifies the preamble that is to be added to the LaTeX file Ebib cre-
ates for printing the database (i.e., the P command). By default, the preamble
is empty. You can set your own \usepackage commands, or anything else you
may need.

36

5.1.22 Print Multiline

When this options is set, Ebib includes multiline field values when it creates a
LaTeX file with P (ebib-print-database). When unset, multiline values are
excluded, which saves space. By default, this option is unset.

5.1.23 Latex Preamble

This option specifies the preamble to be added to the LaTeX file for creating
a list of references from the database (i.e., the L command). By default, the
line \bibliographystyle{plain} is put in the preamble, but you may want to
specify your own BibTeX packages and options.

5.1.24 Print Tempfile

This option specifies the name and location of the temporary file Ebib creates
with the commands ebib-print-database and ebib-latex-database. By de-
fault, this option has no value, which means that Ebib will ask for a filename
each time either of these commands is called.

5.1.25 Allow Identical Fields

If this option is set, Ebib stores the values of multiple occurrences of a single field
within an entry in a single occurrence of that field, separated by semicolons. By
default, this option is unset, because it slows down the loading of .bib files.
See 3.9.

5.1.26 Entry Types

This option allows you to customise the entry types that Ebib uses. Each entry
type has a name, a set of obligatory fields and a set of optional fields. You can
add, alter or delete single fields in an entry type, or whole entry types.

If you want to add an entry type, hit the INS key on the top level and give
the new entry a name, then add obligatory and/or optional fields. It is not
necessary that an entry type has both obligatory and optional fields, you can
define an entry that has only obligatory or only optional fields.

5.2 Modifying Key Bindings

If you are unhappy about Ebib’s standard key bindings, you can change them
to anything you like. To do this, you have to create a file ˜/.ebibrc and write
your preferred key bindings in it. A key binding definition is built up as follows:

(ebib-key <buffer> <key> <command>)

37

<buffer> is either index, entry or strings, for the corresponding buffer.
<key> is a standard Emacs key description, and <command> is the Ebib command
to be associated with the key. The commands that can be used here are listed in
4. Note that it is possible to bind more than one key to a single function: just
add as many ebib-key statements as necessary.

As an example, the following binds C-s to ebib-search in the index buffer,
so that the database can be searched with C-s as well as with /:

(ebib-key index "\C-s" ebib-search)

If you want to unbind a key, you can simply leave out <command>. So if you
want to bind the command ebib-delete-entry to D rather than d, you need to
put the following in .ebibrc:

(ebib-key index "D" ebib-delete-entry)
(ebib-key index "d")

The first line binds D to the command ebib-delete-entry. The second line
unbinds d.

If a command can be called with a prefix key (as for example ebib-delete-entry
can), ebib-key will automatically rebind the prefixed version as well. So in the
example above, the first line not only binds D, it also binds ; D. Similarly, the
second line not only unbinds d, but also ; d.

It is also possible to redefine the prefix key itself. To do this, you must specify
mark-prefix for <buffer>. The value of <command> is irrelevant here, so it can
be left out:

(ebib-key mark-prefix ":")

This sets up : as the new prefix key. Doing this automatically unbinds the
existing prefix key.

38

	Installation
	Basic Usage
	Getting Started
	Opening a .bib file
	Navigating a .bib file
	Starting a New .bib File

	Editing the Database
	Adding and Deleting Entries
	Editing Fields Values
	Editing Multiline Values
	Copy, cut, paste (yank), and delete

	Saving a Database
	Searching
	LaTeX Integration
	Consulting databases from within a LaTeX file

	Cross-referencing
	Printing the Database
	Marking Entries
	Calling a Browser
	Viewing Files

	Advanced Features
	Screen Layout
	Preloading .bib Files
	@Preamble Definition
	@String Definitions
	Sorting the .bib file
	Merging and Importing
	Exporting Entries
	Timestamps
	Multiple Identical Fields
	Virtual Databases
	Simple Selection
	Complex Filters
	Properties of Virtual Databases

	The Multiline Edit Buffer

	The Ebib Buffers
	The Index Buffer
	The Entry Buffer
	The Strings Buffer

	Customisation
	The Customisation Buffer
	Default Type
	Preload Bib Files
	Additional Fields
	Layout
	Index Window Size
	Index Display Fields
	Insertion Commands
	Sort Order
	Save Xrefs First
	Crossref Face
	Marked Face
	Use Timestamp
	Timestamp Format
	Standard Url Field
	Url Regexp
	Browser Command
	Standard File Field
	File Associations
	File Regexp
	File Search Dirs
	Print Preamble
	Print Multiline
	Latex Preamble
	Print Tempfile
	Allow Identical Fields
	Entry Types

	Modifying Key Bindings

